
Frequently Asked Questions

Table of contents

1 Questions..2

1.1 1. General.. 2

1.2 2. Implementation Details... 3

Copyright © 2007 FaunOS, and contributors All rights reserved.

Questions

1. General

1.1. How to use these FAQs?

FAQs will be piled up here. Some of the answers here have been (manually) lifted directly
from javadoc comments in the code. So there's some duplication here, and hopefully the 2
wont fall terribly out of synch.

These FAQs are not all that structured: use your browser's "Find in this page" facility to
search for keywords.

1.2. What's the idea behind Skwish?

The project was born of a need to efficiently store lots of files, big and small, that were to be
indexed using the popular Lucene library. These files have to be stored somewhere. Usually
that "somewhere" ends up being a deep, heavily populated directory structure on the file
system. This directory structure approach, however, doesn't usually scale well, and it
becomes especially annoying when the blobs (files) you're storing have no inherent
hierarchical structure. Worse, when those blobs (files) are small and many, and access is
heavy, all that file I/O begins to take a toll.

A well-known, simple solution to this, is to throw all the blobs in a same file and maintain
their offset boundaries in another file. That way, you keep only a few files open, and you let
the file system and the underlying device controller do their work, e.g. paging data in and out
of a block device. And if you insert related blobs in sequence, you get better locality of
reference and hence less paging.

So this blob storage thing is a recurring problem. And the Skwish project began as an attempt
at a clean, reusable implementation of the above described solution.

Skwish is premised on the idea that the problem of blob storage is orthorgonal to the problem
of indexing.

1.3. What usage scenarios is Skwish designed to address?

Here are some examples:

The application manages a large number of records but does not use a full blown (e.g.
relational) database implementation.

Frequently Asked Questions

Page 2
Copyright © 2007 FaunOS, and contributors All rights reserved.

http://lucene.apache.org/

The application uses a database implementation, but needs to store BLOBs separately. This
requirement may arise for performance reasons, or where the contents of the database is
determined from a set of source entries (records) but which are to be maintained separately.

The application uses an indexing library (such as Lucene) that does not directly support
storing the contents of what is being indexed.

The application needs all-or-nothing transactional semantics. For example, an application
may need to commit a set of entries either en bloc or not at all.

More generally, if you find your application needs to maintain both offset and content files,
where the offset file delineates the boundaries of entries within the content file, then this
library hopefully provides a ready-made solution for that part of the problem.

2. Implementation Details

2.1. Why doesn't Skwish support updating an already inserted entry?

Short answer: the unmanaged version BaseSegment already supports this feature, but it
doesn't allow changing the entry's size. Updates within transactions are trickier to implement.
This will be addressed in a future version.

Longer answer: though the machinery for a bounded update model (where you can update the
contents of an entry, but not its size) is already in place, this feature was put on hold until the
code implementing transactions was worked out. (The transaction design is premised on
append-only property of entry insertion, and the idempotence of entry deletion.)

10-25-07 Addendum: As of version 0.1.2, the transaction segment supports updating
uncommitted, new entries. Eventually, we'll get to updating existing entries. It'll probably
involve more thought than code as we consider and mitigate the attendant race conditions this
feature introduces.

2.2. How big can a Skwish segment grow?

Skwish segments are characterized by their index's offset word width property, which ranges
from 1 to 8 bytes. The maximum total byte size of the entry contents of any segment is
governed by that word width. (As such, the 1 and 2 byte word options are purely
pedagogical: they serve only the test cases.) The high bit of an offset word is used as a
marker for deletion. So a typical 4 byte word segment, thus, can hold about 2GB of content;
an 8 byte word segment can hold almost 1018 bytes.

2.3. What's the file format?

Frequently Asked Questions

Page 3
Copyright © 2007 FaunOS, and contributors All rights reserved.

The file format is specified in the API documentation. It's available here.

Frequently Asked Questions

Page 4
Copyright © 2007 FaunOS, and contributors All rights reserved.

http://skwish.sourceforge.net/doc/overview-summary.html#fileformat

	1 Questions
	1.1 1. General
	1.1.1 1.1. How to use these FAQs?
	1.1.2 1.2. What's the idea behind Skwish?
	1.1.3 1.3. What usage scenarios is Skwish designed to address?

	1.2 2. Implementation Details
	1.2.1 2.1. Why doesn't Skwish support updating an already inserted entry?
	1.2.2 2.2. How big can a Skwish segment grow?
	1.2.3 2.3. What's the file format?

